Dwarf Planets

What Are They?

A dwarf planet, as defined by the International Astronomical Union (IAU), is a celestial body orbiting the Sun that is massive enough to be rounded by its own gravity but has not cleared its neighbouring region of planetesimals and is not a satellite. More explicitly, it has to have sufficient mass to overcome its compressive strength and achieve hydrostatic equilibrium. It should not be confused with a minor planet.

The term dwarf planet was adopted in 2006 as part of a three-way categorization of bodies orbiting the Sun,brought about by an increase in discoveries of trans-Neptunian objects that rivaled Pluto in size, and finally precipitated by the discovery of an even larger object, Eris.This classification states that bodies large enough to have cleared the neighbourhood of their orbit are defined as planets, while those that are not massive enough to be rounded by their own gravity are defined as small solar system bodies. Dwarf planets come in between. The definition officially adopted by the IAU in 2006 has been both praised and criticized, and has been disputed by scientists such as Alan Stern,who worked at the Southwest Research Institute at the time.

Meet Sedna

Cassini

90377 Sedna is a large minor planet in the outer reaches of the Solar System that was, as of 2015, at a distance of about 86 astronomical units (AU) from the Sun, about three times as far as Neptune. Spectroscopy has revealed that Sedna's surface composition is similar to that of some other trans-Neptunian objects, being largely a mixture of water, methane, and nitrogen ices with tholins. Its surface is one of the reddest among Solar System objects. It is most likely a dwarf planet.

For most of its orbit, it is even farther from the Sun than at present, with its aphelion estimated at 937 AU (31 times Neptune's distance), making it one of the most distant-known objects in the Solar System other than long-period comets.

Sedna has an exceptionally long and elongated orbit, taking approximately 11,400 years to complete and a distant point of closest approach to the Sun at 76 AU. These facts have led to much speculation about its origin. The Minor Planet Center currently places Sedna in the scattered disc, a group of objects sent into highly elongated orbits by the gravitational influence of Neptune. This classification has been contested because Sedna never comes close enough to Neptune to have been scattered by it, leading some astronomers to informally refer to it as the first known member of the inner Oort cloud. Others speculate that it might have been tugged into its current orbit by a passing star, perhaps one within the Sun's birth cluster (an open cluster), or even that it was captured from another star system. Another hypothesis suggests that its orbit may be evidence for a large planet beyond the orbit of Neptune.

Astronomer Michael E. Brown, co-discoverer of Sedna and the dwarf planets Eris, Haumea, and Makemake, thinks that it is the most scientifically important trans-Neptunian object found to date, because understanding its unusual orbit is likely to yield valuable information about the origin and early evolution of the Solar System.

Dwarf Planet Facts